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ABSTRACT 

The Dark Energy Survey (DES) is an operating optical survey aimed at understanding the accelerating expansion of 
the universe using four complementary methods: weak gravitational lensing, galaxy cluster counts, baryon acoustic 
oscillations, and Type Ia supernovae.  To perform the 5000 sq-degree wide field and 30 sq-degree supernova 
surveys, the DES Collaboration built the Dark Energy Camera (DECam), a 3 square-degree, 570-Megapixel CCD 
camera that was installed at the prime focus of the Blanco 4-meter telescope at the Cerro Tololo Inter-American 
Observatory (CTIO). DES has completed its third observing season out of a nominal five. This paper describes DES 
“Year 1” (Y1) to “Year 3” (Y3), the strategy, an outline of the survey operations procedures, the efficiency of 
operations and the causes of lost observing time. It provides details about the quality of the first three season's data, 
and describes how we are adjusting the survey strategy in the face of the El Niño Southern Oscillation. 

Keywords: Cosmology, Dark Energy Survey, Dark Energy Camera, Operations, CTIO 

1. INTRODUCTION
The Dark Energy Survey (DES) is an international collaboration, with over 500 scientists from 28 institutions and 
consortiums in the US, Chile, the UK, Spain, Brazil, Switzerland, and Germany. The wide-field (WF) survey will 
produce images of 5000 square degrees of the southern galactic cap collected during 525 nights of observing from 
2013 to 2018. The WF survey will be accomplished in 10 dither patterns (tilings). Additionally, ten 3-square-degree 
fields will be imaged repeatedly to produce a supernovae survey The DES [1-2] will measure dark energy 
parameters using four complementary techniques: galaxy cluster counting, baryon acoustic oscillations, weak 
gravitational lensing, and Type Ia supernovae. In order to carry out these surveys, the DES Collaboration 
constructed a new instrument, the Dark Energy Camera. 
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The Dark Energy Camera and Auxiliary Detectors 

The Dark Energy Camera (DECam) [3] was designed and built from 2004 to 2011. It consists of a wide-field 
corrector, a mosaic CCD imager and associated mechanical, optical, and electronic components. The optical 
corrector has 5 fused-silica optical elements to attain an f/2.7, 2-degree-wide image at the focal plane. DES uses 5 
filters, DES g, DES r, DES i, DES z, and DES Y-band, with central wavelengths 473, 642, 784, 926, and 1009 nm, 
respectively. The focal plane itself has a 42 cm radius and is populated with 62 2048x4096 pixel 250 μm thick, 
fully-depleted, red-sensitive CCDs, for imaging. DECam was delivered to CTIO in a series of shipments starting in 
early 2010. The imager was the last major component to be shipped, arriving in December 2011. Installation [4-6] 
followed. “Official First Light” was achieved on September 12, 2012 [7].  DECam was commissioned during 
September and October 2012. A survey and instrument testing period called “Science Verification” was carried out 
by the DES Collaboration and “Community Astronomers” during November. Regular “Community Observing” 
began on December 1, 2012. Science Verification was extended into February 2013, principally to iron out 
remaining issues with the telescope. As a result, the first observing season for DES was postponed to August 2013.  
Figure 1 shows a photo of the Dark Energy Camera mounted at the prime focus of the Blanco telescope. 

Three auxiliary detectors on the CTIO summit, supplied by DES, provide information for photometric calibration.  
An All-Sky Radiometric Camera (RASICAM) [3,8-9] is used to monitor the sky using the wavelength range 970 nm 
< λ<1250 nm. In this wavelength range, relatively warm clouds are easily distinguished from cold, clear skies. 
“GPSMon” [3,10] provides a cross-check of the amount of precipitable water vapor (PWV) in the atmosphere. The 
Atmospheric Transmission Monitoring Camera (aTmCam) [3,11-12] was tested in Y1 and Y2 and operated 
consistently starting at the beginning of Y2. The aTmCam consists of a Paramount telescope mount and four small 
telescopes, each with a different narrowband filter, which monitors the brightness of suitable standard stars, thus 
providing the atmospheric transmission in wavelength regions dominated by the PWV and aerosol optical depth.  
 
The Dark Energy Survey Fields 

DES carries out two interleaved surveys: a 5000 square-degree “wide field” (WF) survey in the southern Galactic 
Cap and a 30 square-degree time domain survey. The 5000 square-degree “wide-field” (WF) has three main regions 
(see Figure 2). There is a broad roughly circular region from RA of roughly 0 to 120 degrees and DEC -70 to -10 
degrees that provides a large contiguous area for the large-scale structure measurements. There is a wide roughly 
box-shaped region around the South Pole Telescope (SPT) observing area [13]. Finally, the survey encompasses a 
part of SDSS Stripe 82 [14], primarily for calibration purposes.   
 
The footprint of a single DECam exposure is roughly hexagonal, constrained to an orientation aligned with celestial 
coordinates by the equatorial mount of the Blanco telescope; therefore, an area of the sky covering a particular range 
of R.A. can be covered with minimal gaps and overlaps by using an hexagonal tiling pattern aligned in declination. 
A “tiling” is a set of exposures, one in each of 5 filters, at pointings arranged in such a pattern. Over wider ranges of 
R.A. the planar approximation of the sky breaks down, so the strictly hexagonal layout is “broken” every 30 degrees 
of R.A., resulting in extra overlaps between exposures within a tiling at 30 degree intervals. A single tiling collects 
useful science data on roughly 83% of the footprint area due to these breaks, deviation from the planar 
approximation with each 30 degree R.A. neighborhood, and incomplete coverage within each hex (due to, for 
example, gaps between CCDs, bad CCDs, and problematic area near the edges of the CCDs). The plan for the DES 
wide survey specifies 10 separate tilings, each offset from the others by a significant fraction of the camera field of 
view, such that observations of individual astronomical sources are spread across the focal plane. The g, r, i, and z-
band exposures are 90 seconds duration.  The Y-band exposures are 45 seconds duration through Y3. In Y4 we plan 
to change the Y-band observations to 90 seconds. See Section 5. 
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Figure 1 The Dark Energy Camera is mounted at the prime focus of the Blanco 4m telescope at CTIO.  The covers for the 
primary mirror are open. The camera assembly, including the support cage, is approximately 3.6 m long and is secured to the 
inner telescope ring. The camera, not including the support cage and counterweights, weighs approximately 4350 kg. Subsequent 
to the date of this photo the cage was retrofitted with aluminum side-covers. The aluminum covers of two of the four readout 
electronics crates are visible near the top of the camera, just underneath the “Top Cap”.   
 

 
Figure 2. The Dark Energy Survey observing “wide fields” are shown outlined in black on this plot of RA and DEC.  During Y1 
DES planned to observe the areas outlined in dark blue, which encompass SDSS Stripe 82 (upper) and the SPT area (lower). The 
legend also shows the color for the SV (purple blotches), SN (yellow), and nominal Y2 areas.  

The purpose of the time domain survey is to identify Type Ia SNe through difference imaging [15] and measurement 
of the light curves. The 10 time domain fields, shown in Table 1, are observed on a regular cadence. The 8 “shallow 
fields” are observed for single exposures in g-band (175s), r-band (150s), and i-band (200s) and for two images in z-
band (200s each).  The 5 exposures of a shallow field are considered a “sequence” and the sequence is observed 
consecutively.  The two “deep fields” are observed for 3 exposures of 200s each in g-band, for 400s each in r-band, 
for 5 exposures of 360s each in i-band, and for 11 exposures of 330s each in z-band. The exposures in each given 
filter for the deep fields are considered a sequence. The exposures for each filter are sequential but the different 
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Field
Name

RA DEC

El 7.8744 (00:31:29.9) -43.0096 (- 43:00:34.6)

E2 9.5000 (00:38:00.0) -43.9980 ( -43:59:52.8)

S1 42.8200 (02:51:16.8) 0.0000 (00:00:00.0)

S2 41.1944 (02:44:46.7) -0.9884 (- 00:59:18.2)

Cl 54.2743 (03:37:05.8) -27.1116 ( -27 :06:41.8)

C2 54.2743 (03:37:05.8) -29.0884 (- 29:05:18.2)

C3 52.6484 (03:30:35.6) -28.1000 (- 28:06:00.0)

X1 34.4757 (02:17:54.2) -4.9295 (- 04:55:46.2)

X2 35.6645 (02:22:39.5) -6.4121 (- 06:24:43.6)

X3 36.4500 (02 :25:48.0) -4.6000 (- 04:36:00.0)

 

 

filters might be observed at different times during a single night or on different nights. The limiting magnitudes [15] 
for difference imaging detections is about 23.5 in each band of the shallow field epochs and about 24.5 for the deep 
field epochs. Because the telescope pointing is accurate to 5 to 7 arcseconds in both RA and DEC, each SN 
sequence is preceded by a 10s exposure that is processed to find the pointing offset correction applied before the 
first exposure in the sequence starts.  
 

Table 1 RA and DEC (J2000) of the 10 DES supernova fields. Fields C3 and X3 are “deep fields”. The other 8 fields are 
“shallow fields”.  

 

 
 
This paper describes DES “Year 1” (Y1) to “Year 3” (Y3) operations. Section 2 describes the survey procedures, 
Section 3, the maintenance and improvements to the camera and observing systems. Section 4, the Y1 to Y3 
narrative including a description of the strategy and goals for the first three year's data, the efficiency of survey 
operations and the progress towards the survey goals.  Section 5 describes the plan and outlook for Y4 and Y5. 
 

2. THE DES Y1 TO Y3 SURVEY PROCEDURES 
Observation Schedule & Staffing 

The DES observations are staffed at the telescope by collaboration members. The Operations Scientist schedules the 
observing team from among the volunteers.  There are three observing roles during full nights. “Observer 1” 
controls the camera through the data-acquisition interfaces [3] and executes the nightly program by following 
standard DES observing procedures [16]. This observer ensures that images are being recorded, pays attention to the 
alarms and warnings, and solves routine problems where procedures have been established. “Observer 2” performs 
quality control procedures, checks the exposures for problems and ensures that the image quality is as expected 
given the current conditions. The “Run Manager” is the lead observer and is responsible for ensuring that the two 
other observers understand how to perform their roles. Indeed, though observers are asked to read online procedures 
in advance of their observing trips, training is performed on site by the Run Manager.  The Run Manager also has 
some daytime responsibilities described below, so they are not expected to stay up for the full night. During half-
night observations DES usually has only two observers with the Run Manager taking on one of the roles. Having a 
well-staffed and well-rested observation team reduces the chance for mistakes and misunderstandings that cost 
observing efficiency.  
 
Generally, the “Observer 1” role can be performed by an inexperienced but attentive observer. We often fill that 
position with students and post-docs who have no previous observing experience. We prefer to have more-
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experienced observers as “Observer 2” for their expertise in image quality assessment. Run Managers are required to 
have performed both observing roles effectively because of their responsibility.   
 
Support is available to the observers through the CTIO Telescope Operator (on hand), the CTIO Observer Support 
Specialist (on-site), the CTIO Instrument Scientist (typically by phone), and the DES Operations Scientist & Support 
Team (by internet connection).  
 
Daily Operations Cycle 

The typical “Daily Cycle” starts with the Run Manager’s Meeting held daily at 16:00 CTIO time. The Run Manager 
meets by phone with the Operations Scientist & Support and Data Management (DESDM) Teams. We discuss any 
technical or procedural problems that occurred during the previous night, provide additional information to DESDM 
about individual images that might be problematic (for example, if the telescope slewed during the image), receive 
the DESDM-calculated data quality from previous night’s imaging, and discuss what to expect from the “Observing 
Tactician” (OBSTAC) (see next subsection) based on the expected weather conditions.  We discuss any unusual 
procedures that the observers might need to execute, such as Target-of-Opportunity (TOO) observations, or 
(somewhat less frequently) reactions to current camera or telescope hardware conditions.  After this meeting the Run 
Manager implements the data quality, updating the Exposure Table so that OBSTAC has up-to-date information on 
which images need to be redone.  
 
The period before twilight is used for calibrations and to establish the basic functionality of the instrument. An LED 
system [17] illuminates a flat-field screen attached to the inside of the dome. We take a set of biases and flats in each 
of the filters. These images are used in the daily calibration. An hour before sunset the telescope operator will open 
the dome. At minus 10 degree twilight (roughly 40 minutes after sunset) the observers execute three standard star 
field [18] exposure scripts, one at high airmass (X=1.65 to 2.1), one at medium airmass (X=1.25-1.65), and one at 
low airmass (X<1.25). The standard star fields are fields of stars with previously calibrated brightnesses in each of 
the DES filter bands.  They are used for characterizing that night’s instrumental and atmospheric response (by fitting 
the observations to a set of “photometric equations”) and are an integral part of the photometric calibration for DES.  
At minus 12 degree twilight (roughly 48 minutes after sunset) the observers begin OBSTAC observations.  These 
continue during the night until minus 10 degree morning twilight, for standard star observations, and finally dome. 
Observer 1 controls SISPI and makes sure exposures are being recorded as expected.  Observer 2 maintains a watch 
on the data quality using streamlined image analysis tools such as “Quick Reduce” [3,16] developed by DES-Brazil 
and KENTools [16]. 
  
The observers maintain commentary and notes in an electronic logbook. At the end of each night the observers 
create two night summaries. The “CTIO Night Report” lists weather conditions, problems encountered, and the 
fraction of time lost to each.  The “DES Night Summary” provides the narrative of the shift including the expected 
plan with ephemeris, the conditions, accomplishments, problems encountered, and notes for the DESDM team. A 
series of automatically generated plots and statistics follows, including transparency, PSF, and ellipticity of stars for 
each image, a note of any gaps between exposures of greater than 60 seconds, the progress on wide-field and SN 
surveys, and a list of exposures. This summary provides a concise history of what happened during that particular 
night. 
 
The images are transferred by the NOAO Data Transport System [19] (DTS) to NCSA/UIUC in Urbana-
Champaign, Illinois, usually within 5 minutes after the moment that the shutter closed. Copies of the data are stored 
in La Serena and at the NOAO Science Archive in Tucson [20]. To conserve both disk space and network 
bandwidth the DECam data are losslessly FITS tile-compressed [21] using FPACK. Note that both the DESDM 
pipeline, described below, and the Community Pipeline [22] use a lossy FPACK compression [23]. 
 
The camera and telescope are returned to a safe condition after observations are finished. 
 
OBSERVING TACTICIAN (OBSTAC) 

During the course of the season a variety of weather, seeing, and sky-brightness (Moon) conditions are expected to 
occur. A computer application, the “Observing Tactician” (OBSTAC) [24] uses this information to select the highest 
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priority fields to observe during the next short (5-15 minute) interval throughout the night. A simplified version of 
the OBSTAC decision tree is shown in Figure 3. If any of the time-domain fields have not been observed in the past 
6 nights, then OBSTAC selects the field with the longest gap to minimize deviation from the desired time-domain 
cadence. If there are time-domain fields that have not been observed in the past 3 nights, and the seeing is too poor 
to take exposures useful for weak-lensing ellipticity measurements but sufficient for SN photometry, then these are 
observed, resetting the cadence at minimal cost to wide-survey progress. OBSTAC will then select among not yet 
completed wide-survey exposures (tracked by an exposure table in the SISPI database) that are likely to be of 
acceptable quality (based on predicted airmass, seeing, and sky brightness). 
 
To ensure that exposures on the western side of the WF footprint are completed in the beginning of the DES season 
(the only time they are observable at acceptable airmass) and that as few exposures in the eastern side of the 
footprint are completed before the end of the DES season (when no other exposures are possible), OBSTAC 
generally prefers exposures in fields that set earlier in the night. In DES Y1 and Y2, observations in the WF 
footprint were prioritized according to sidereal time at which the “observable field” set with an airmass limit of 1.4. 
In Y3 this was modified as describe below (Section 4). Among exposures with the same priority, OBSTAC selects 
exposures that minimize slew time.  

 
Figure 3 A slightly simplified version of the scheduling algorithm implemented by the Observing Tactician algorithm 
“OBSTAC”. The “seeing” is that expected based on current conditions when projected to an equivalent i-band observation taken 
at zenith. “wide” is short for “wide-field” observations. Priorities can be adjusted for tiling #, RA & DEC, etc … in the wide 
field survey. From left, the horizontal choices are loosely labeled “condition 1” for “deadman SN”, “condition 2” for good PSF 
WF, “condition 3” for poor PSF SN observations should any sequence not have been observed in the previous 4 nights, and 
“condition 4” if the PSF is poor and the SN are all already up-to-date.    

 
Data Processing & Data Quality 

The DESDM pipeline [25] performs image detrending and calibration that we referred to as “First Cut” in order to 
assess the quality of each exposure with respect to the minimum requirements necessary for DES to obtain its 
scientific objectives. The overscan and bias is subtracted and the image is divided by the mean dome flat. The CCD 
crosstalk is removed using a premeasured matrix, a linearity correction applied, fringe and pupil ghost corrections 
are combined, and a star flat is applied to subsections of each CCD.  An astrometric solution for each image is found 
by comparing to known stellar positions in the 4th USNO Astrograph Catalog (UCAC-4) [26]. Finally, the point 
spread function (PSF) is determined by examining the shapes of stellar images and then the position, brightness, and 
rudimentary shape of objects detected in each image are cataloged.  
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We determine if the image is adequate for the wide-field survey by requiring that the “Effective Exposure Time” 
[27], teffective=(0.9k/FWHM)2(Bkgddark/Bkdg)(10-2C/2.5) exceeds a minimum. Here k is a filter-dependent 
“Kolmogorov Factor” scaled relative to i-band that takes into account the natural seeing dependence on wavelength, 
FWHM is the delivered point-spread-function for stars, Bkgd and Bkgddark are the measured sky background and 
dark sky condition, and C is the atmospheric extinction offset calculated from a comparison of the brightness of stars 
within the image to those in the APASS DR7 and/or NOMAD public catalogs [28-29]. teffective = 1 corresponds to an 
exposure taken at zenith with no moon, clear skies, and nominal seeing, and sky brightness, and atmospheric 
extinction. We require that teffective > 0.2 for g, and Y-bands and > 0.3 for r, i, and z-bands. Each image is then 
checked for artifacts, such as satellites and airplane trails, and these images are flagged.   
 
Supernovae are discovered by searching for temporal variations in brightness between SN template images and SN 
exposures. These SN search images are first processed through a detrending pipeline similar to First Cut, and then 
through a difference imaging pipeline [15]. The SN difference imaging pipeline aligns the template and search 
images, adjusts the template image to match the seeing conditions of the search image, then subtracts the two images 
to produce a “differenced” image. Object detection software runs over the differenced image to identify transient 
objects, these transient objects are then passed through machine learning algorithms [30] to identify transients which 
are supernova candidates. The data quality and the efficiency of this pipeline is monitored by inserting fake 
supernovae into the search images and monitoring how well these fake events are recovered by the pipeline. In 
particular, four fake supernovae of fixed magnitude (magnitude 20) are inserted into each CCD in each search 
image. The search images are considered to be of acceptable quality if > 90 % of the fixed magnitude fakes is 
recovered and the S/N ratio of the magnitude 20 fakes is > 20 for shallow fields and > 80 for deep fields.  There is 
an additional requirement that seeing is < 2.0 arc seconds if projected to i-band at zenith instead of the filter/airmass 
combination of the exposure. 
 
The First Cut processing and data quality evaluation and the SN image pipeline are typically turned around in less 
than 24 hours. The results are applied to the Exposure Table by the Run Manager as described previously. 

3. DECAM MAINTENANCE AND UPGRADES Y1 TO Y3 
Generally the camera and telescope performance has been very good since SV.  Nonetheless, there has been a 
continuous effort [31] to improve it.  This work is carried-out by technical staff from both Fermilab and CTIO. 
 
Prior to and during Y1, “hardening” of camera infrastructure systems against unexpected failures was done. This 
work has been discussed extensively in the “DECam Paper” [3] and elsewhere [7].  Repair of the dome floor and 
primary mirror cooling system temperature occurred in Nov. 2013, partway through Y1. Photodiodes were mounted 
on the top end of the cage to protect the CCDs from being exposed during very bright conditions by providing an 
external interlock to the shutter.   Studies of stray light during commissioning led to retrofits to the shutter and filter 
changer assemblies [3] completed in March 2014, after Y1.  DES arranged the regular servicing of the filter changer 
mechanism and the shutter at that time.  A community use VR-band filter [3] was added to the camera at the same 
time.  
 
The changes during Y2 were directed towards improving the DECam image quality. By Sept. 1, 2014 the primary 
mirror air pad controls were upgraded to more precise ones.  There were a couple of changes to the active optics 
system (AOS) controls [3]. It is necessary to describe how the AOS works [32-33] in order to describe the changes. 
The hexapod, which mechanically couples DECam to the Prime Focus Cage, provides position adjustment for 
DECam with 5 degrees of freedom with respect to the primary mirror: translation, piston, tip & tilt.  A look-up-table 
(LUT) provides the nominal hexapod position as a function of temperature, Hour Angle, and Declination.  The AOS 
then uses out-of-focus stars on CCDs located above and below the nominal focal plane to supply a position 
correction to the hexapod, based on analysis of the just-readout exposure, in time for the next one.  Analysis of all 
DECam exposures led to a more accurate default hexapod position that was introduced Oct. 21, 2014. An improved 
LUT was installed on Jan. 4, 2015, towards the end of Y2. These changes led to an improvement of about 0.25” to 
the PSF, to be taken in quadrature with all the other contributions [3].  
 
Prior to Y3 (July 2015) there was continued work on the LN2 system that cools the camera including the 
replacement, for the 5th time, of the pump that provides LN2 to cool the CCDs. We continued to rotate between two 
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pumps, removing one and installing another. The one that is removed is refurbished at Fermilab, where we replace 
the bearings on the rotor shaft and rebalance the rotor. We are studying the pump to see if we can improve the 
lifetime to more than 12 months.  A change in the material for the rotor beating from Teflon plus MoS2 to a more 
durable polyimide-based plastic might do the trick. That is currently under test at Fermilab. Two of the vacuum-
jacketed LN2 transport pipe segments were replaced with new ones that were more robust and also easier to 
install/remove. Prior to and after these changes the LN2 system, which is designed [3] to be closed-loop with more 
than 100W of cooling headroom, the system was still venting N2.  Engineering analysis indicated that the likely 
causes were: a heat leak due to a poor vacuum in one of the new vacuum-jacketed lines (1r), less than ideal 
operation (water-glycol coolant too cold) of the two He cryo-coolers, and wear of the two He cryo-coolers, which 
had been in nearly continuous operation for about 3 ½ years. When these were mitigated during the (6th) pump 
change in Feb. 2016, after Y3, the LN2 system operated in closed-loop mode with 140W of cooling headroom. The 
vacuum in the 1r line has degraded over the past 4 months from a few mTorr to ~100 mTorr. The cooling headroom 
is now down to about 100W. At least the CTIO staff doesn’t have to fill it. 
 
Partway through Y3 mountaintop dust was discovered on the inner and outer surfaces of C1, the lens that is closest 
to the primary mirror. This summarizes the report from CTIO.  The dust was on approximately one third of the 
outside surface in the direction towards the SE in primary mirror coordinates. It is also on the complete interior 
surface.  Bowl-shaped, that surface is downwards when the camera is oriented to zenith. It has been accumulating 
since installation, almost surely anytime a strong wind blows directly onto C1. In very windy conditions we have 
seen the wind overcome the dry-gas purge as that vents from C5 to C1, escaping out of narrow ports between the 
lens cells and the lens.  There was no evidence for dust on any other lens surfaces. Figure 4 shows some photographs 
of C1 that highlight the dust.  The dust was removed during the Feb. 2016 shutdown, after Y3. There followed a 4% 
gain in throughput.  
 

                
Figure 4 The first DECam lens, C1. On the left we see the C1 outer surface illuminated from the front by a hand-held 
flashlight. We can see through C1-C3, up to the block filter. On the right we see the dust, highlighted by changing the 
angle of the light. This dust was removed after Y3 (during Feb. 19 to 24, 2016). Photos from CTIO staff. 

4. THE DES Y1 TO Y3 NARRATIVE, EFFICIENCY, LOSSES, AND PROGRESS  
4.1 Y1 WF Survey 
For Y1 we chose to observe the SN fields plus a 2000 square-degree subset of the entire DES WF footprint 
consisting of the first four tilings in each of the five filters, g, r, i, z, and Y-bands. This choice for the WF survey 
provided deeper and more uniform observations over that subset of the DES field than we would achieved had we 
tried to cover the full 5000 WF.  That choice of depth over total area enabled and benefited science analyses and 
publications, allowing them to be performed earlier, albeit on a subset of the WF area.  
 
The first Y1 night of DES observing started on the night of August 31, 2013. There were 91 full nights through 
January 4, 2014 and 28 first-half nights after that, for a total of 105 nights. Y1 concluded during the night that 
started on February 9, 2014.  See Table 2. The western part of the part of the survey field was no longer observable 
by the end of the run and the eastern part of the survey field was setting in the first half of the night by the end of 
January. Other nights during Y1 were assigned to “Engineering”, around periods of the Full Moon, and to 
“Community Users” for the remaining 24 full nights and 28 second-half nights during Y2.  
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We track efficiency using a combination of information including the ELog, the DES and CTIO Night Reports, and 
tools. The DES and CTIO Night Reports were collated to produce the estimate of how we spent our time. See Table 
3. A sophisticated query of the exposure database makes separate summations of the exposure lengths and gaps 
between exposures to provide a “shutter-open efficiency”.  That calculation indicated we performed OBSTAC 
observing with the shutter open for 63% time. The remainder of time is spent with the shutter closed and either 
reading out the CCDs or moving the telescope and/or dome. The time between shutter-closed and shutter-open was 
26s to 30s when there was no telescope slew.  If there was a slew to a new position, the slewing and settling-time of 
the telescope, rather than the readout of the CCDs, determined when we could next open the shutter.  
 
During Y1, the time lost due to the camera or telescope failures was dominated by two incidents. A night was lost 
during October 2013 due to a software error in the Telescope Control System. A night was lost during November 
2013 when it was realized that a CCD on the focal plane was not responding correctly to clock signals. Subsequent 
investigation showed that it had failed. These and other, minor, problems are documented elsewhere [3,7]. The 
largest source of lost observing time was the weather. Table 3 indicates 90 ¼ hours (10.2%) were lost during Y1 
because the weather was too poor to open the dome.  

 
Table 2 Scheduled start and end dates for DES observing, and the number of half-nights and full nights for Y1 to Y3.  

Season Start Date End Date 2nd Half Nights Full nights 1st Half Nights 
“Y1” Aug. 31, 2013 Feb. 09, 2014 0 91 28 
“Y2” Aug. 15, 2014 Feb. 15, 2015 10 80 41 
“Y3” Aug. 04, 2015 Feb. 12, 2016 32 73 39 

 
 
Table 3 DES Operational efficiency sums accumulated through Y3. These are based on the observer’s reports in the CTIO Night 
Summaries. “Time Available” is the time we should spend observing.” Observing Time” is the number of hours the observers 
were actually engaged in observing. “Engineering Observations” are those in service to the understanding of camera or 
telescope systematics. Next is indicated the number of hours lost to bad weather that results in closing the dome instead of 
observing, to a failure of the telescope, dome, or mountaintop infrastructure, to the camera, and to obvious observer error 
(“Other”). In the case of the lattermost, increased training and/or a clarification to the procedures generally prevents any re-
occurrence.   

Operations DES Yr. 1 
Accumulated 

Hrs. (%) 

DES Yr. 2 
Accumulated 

Hrs. (%) 

DES Yr. 3 
Accumulated 

Hrs. (%) 

Observing Time Available 888 ¼ (100%) 928 ¾ (100%) 969 ¾ (100%) 

Observing Time 751 ½ (84.6) 782 ½ (84.2)  636 ½ (65.6) 

Engineering Observations 0 (0) 0 (0)  1 ¾ (0.1) 

Bad Weather 90 ¼ (10.2) 140 (15.1) 293 ¾ (30.3) 

Telescope or Infrastructure 
Failure 

18 (2.0) 2 ⅞ (0.3) 28  (2.9) 

Camera Systems Failure 25 ¾ (2.9) 3 ⅛ (0.3) 9 ¾ (1.0) 

Other 2 ¾ (0.3) ¼ (0) 0 (0) 
 
During Y1 we recorded 17671 WF images. Of those, 82% (14444) passed the teffective data quality measure.  Of the 
18% that were declared “unusable”, the bulk were generally g- and Y-band exposures directed by OBSTAC during 
poor achieved seeing that were recorded before the changes to the dome floor and primary mirror cooling mentioned 
above. As a result of OBSTAC’s scheduling g- and Y-band WF exposures when the seeing is poor, the achieved 
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Going forward, the weather never was rarely close to the seasonal average and by now you have seen Table 3, which 
shows we lost ~30.3% of our possible observing time with the dome closed. The weather pattern was diagnosed as a 
strong El Niño Southern Oscillation [36].  The telescope and camera performed reasonably reliably (note that the 
knocking out of electrical power for a few days during the August blizzard was the biggest contributor to 
infrastructure failure). The time 9.5 hours lost due to camera problems was primarily in two incidents. On one night 
we lost about 3.5 hours when the readout crate cooling tripped off, the crates overheated and shut themselves off as 
a protective measure, and then complications ensued trying to restart. On another occasion the beginning of the 
evening start of SISPI didn’t go smoothly until we attained expert help, costing about 3 hours.  During Y3 we 
recorded 13433 WF images. Of those, only 71% (9565) passed the teffective data quality measure.  The reason that a 
higher fraction of images were declared bad was extinction due to cloudy weather. Y3 ended the night of February 
12, 2016. The good r-, i-, and z-band exposures (RHS) had a median seeing of 1.02”, 0.95”, and 0.92”, a little worse 
than either Y1 or Y2.  Figure 7 shows he survey progress map as of the end of Y3.  That figure shows that we 
successfully covered the eastern part of the Y1 field with four tilings in all five filters.  It also shows the most of the 
survey area is covered to 4 or 5 good tilings. An exception is Y-band, where the western side is completed through 6 
tilings. The “Y2 hole” is filled in. However, falling behind 1/10th of a season in Y1 and Y2, and 40% of a season in 
Y3, we have completed about 80% of that originally planned for the end of Y3 given average conditions. The 
principal reasons are broken dome and primary mirror cooling increased the sensitivity to weather-related 
temperature swings (identified and solved during Y1), bad weather (Y2), and extremely bad weather (Y3).  Figure 8 
indicates that the Y3 weather was the worst recorded at CTIO and that is was unpredictably poor.  
 

 

Figure 7 The completed Y1-Y3 survey fields in each filter. The colored dots represent the number of “good” exposures (as 
defined by the teffective data quality criterion described above). Note that the “Y2 hole” is filled in. The odd striping in RA is due to 
the change in OBSTAC priority for Y3 described above.    
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a greater fraction of our overall observing time (105 nights) on SN data than in previous years.  We ended the SN 
“deadman” OBSTAC condition 1 on January 21, 2016, just before a 15 night gap for engineering (around the Full 
Moon) and community observing. That would normally have meant the end of DES SN observations for the season. 
However, a few days after we restarted in February, the PSF conditions were poor enough that that the OBSTAC 
“SN in bad seeing” condition was triggered.  Typical of Y3, the weather was so bad that we did SN observations 
even when we preferred not to have them anymore!  Figure 9 and Figure 10 contain the plots for Y3, as well. 

 
Figure 9  The DES Yearly SN observations, good data only, Y1 to Y3.  The horizontal axis is the date from the beginning of the 
season to the end of the season.  The vertical axis lists each of the 10 SN fields. If the SN field was observed there is a vertical bar 
with a separate color block for each filter. The two “deep fields” are C3 and X3. The arrows illustrate (red) periods with lots of 
bad SN data, (blue) long gaps as a result of a combination of schedule gaps and sometimes bad data, and (green) observations 
taken during long, steady periods of 6-night “deadman” OBSTAC conditions. 

 

 
Figure 10 For Y1 to Y3, the number of nights between successful SN observations for the shallow and deep SN fields.  For Y1, for 
instance, the peak at 4 night gaps is due to the frequent OBSTAC condition 3 of poor PSF, the peak at 6 night gaps is due to the 
OBSTAC “deadman” condition 1. During Y2 there was little of the 1st peak.  Ideally all of the observations are on the 6 night gap 
OBSTAC “deadman”. Next to ideally there are no occurrences of more than 6 night gaps. The mean gaps for each season are 
indicated.  
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5. SURVEY YEARS FOUR & FIVE AND OUTLOOK 
DES Y4 observing season is expected to start as usual, that is: sometime in August 2016 and finish in February 
2017.  Schedule details aren’t available as of this time. The goal for WF observing will be to finish tilings 1-8 with 
priority given to those missed in previous seasons.  We will make an adjustment to the WF survey strategy for the 
Y-band as follows. We will replace the last four Y-band tilings (7 to 10), which are 45 second exposures, with two 
tilings of 90 second duration exposures. In doing so we will use 3290 fewer exposures to gain approximately the 
equivalent Y-band depth, saving time for approximately 325 more 90 second exposures in either z-band or Y-band 
per remaining DES season.  The 2nd combined (9+10) Y-band tiling will be given lower priority in Y4 so that we 
have sufficient Y-band tiling left to observe in Y5.   We are hoping that Y4 is our first above-average weather 
season. It is predicted [36] that the surface temperature in the southern Pacific Ocean will drop, so we can hope for 
La Niña conditions by the time we start up again.  We haven’t made detailed plans for Y5 at this time as they, 
ultimately, depend on what happens during Y4.  
 
For Y4 DES continues to look for ways to improve the image quality. We [38] used all of the images from the out-
of-focus CCDs (DONUT analysis) to improve the 5D active optics (hexapod) LUT and the primary mirror (4MAP) 
LUT. A new hexapod LUT, 4MAP LUT, and pointing LUT was produced and installed on May 25, 2016.  The 
Blanco primary mirror support system (4MAP), as now implemented, presents forces to the primary depending on 
the gravity vector, plus a static astigmatism correction. This comes from a LUT within the telescope controls. Data 
taken in 2013 ascertained that it is possible [32] to improve the mirror figure as a function of sky position so as to 
better zero-out primary mirror aberrations (particularly astigmatism) through the analysis of the DONUT images and 
feedback of corrections between images though a PID loop to the 4MAP controls. Testing of this new algorithm, 
unprecedented for a wonderful old telescope, is scheduled for before the start of Y4. We expect an improvement to 
the best PSF exposures [39] of about 0.05”.   
 
Y5 is nominally the final season for DES observing. We’ve been thinking carefully about how well we can meet the 
science goals of the survey given that we are now 6/10th of a DES season behind due to the unusually bad weather.  
Many analyses benefit from uniform homogeneous coverage of the WF survey area and the DES survey strategy has 
made that a priority from the start of Y1, adjusting OBSTAC along the way.  If the weather during Y4 is a repeat of 
Y3, we will be roughly a full average DES season behind.  It is not too early to think about whether or not we will 
need a Y6 based on poor weather alone.  After all, we didn’t ask for a four year survey when we started the building 
the camera in 2008.   
 
After DES, the DECam will continue to be available as a Community Instrument on the Blanco Telescope for a long 
time [40].  

6. SUMMARY 
The Dark Energy Survey Collaboration studies the accelerating expansion of the Universe through four 
complementary techniques. To produce the deep, 5000 square-degree survey and the 30 square-degree time-domain 
SN survey that are specified by the science goals, the collaboration designed and built the Dark Energy Camera, 
now operating on the Blanco Telescope at CTIO.   
 
DES has completed the first three of five 105-night observing seasons. Operational procedures developed for Y1 
subsequently tweaked and improved have achieved high survey efficiency. Though DES has successfully observed 
only 80% of an average first 3 seasons, primarily to bad weather, we do already have a reasonably uniformly 
covered WF survey with a least four good exposures in all five filters. In addition, the procedures and priorities 
dedicated to the 30 square-degree transient survey have provided the experiment with data containing light curves of 
~5000 supernovae.  DES has made good use of the initial data samples, with discoveries of new solar system objects 
[41], discoveries of dwarf galaxies and structure in the Milky Way [42-44], systematic studies of galaxy clusters 
[45-46], weak gravitational lensing [47-48], and our first cosmological results [49].  With more than 70 papers in 
some state of publication, there is every indication that DES will successfully complete its scientific agenda.   
 
The start of Y4 is coming soon. Combined optimism about the weather with the planned improvements at the 
telescope leave us hopeful for our first above average DES observing season. 
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